Chapter 1. Introduction

<u>Def</u>. Database - management system (DBMS).

A collection of interrelated data (database) and a set of programs to access those.

* Primary goal: Store & rotrieve in a convenient & efficient manner.

(1) Database system applications.

Remark. Although user interfaces hide details of access to detabases, it is now an essential part of almost everybody.

(1.2) Purpose of database systems

Remark. Before DBMS, file processing system, which is supported by Conventional OS, is used.

- * Disadvantages (= advantages of DBMS).
 - Data redundancy: Emplicates & different formats.
 - Duta inconsistency: Various inwonsistent copies.
 - Data isolation: Scattered data.
 - Difficulties in accessing data: one code per function.
 - Integrity problems: Consistency constraints.

 ex) Bank balance always positive.
 - Concurrent access anomalies
 - Security problems: Different Alless boundaries per user.

[3]. View of Data.

Remark. Providing abstract view of the data is a major purpose of DBMS.

* Three levels of Data Abstraction.

View Level Logical Cevel

View Level : Simplifying user interaction with multiple views.

Togical Cevel : What data are stored, what relationships exist among them?

Thyrial data independence.

Thysical Level . How data are actually stored?

Remark. Each level has its own schema which describes the overall design.

Def. Instance of a database is a collection of information Stored in the database at a particular moment.

Def. Data model is a collection of conceptual tools for describing data, data relationships, data semantics and consistency constraints.

- 7) Relational Model uses a collection of tables (relations) to represent both data and relationships between data.
- ii) Entity-Relationship (E-R) Model uses a collection of basic objects (entities) and relationship among entities.
- encapsulation, methods (functions) and Object identity.
- iv) Semistructured data model permits specification of data individual items of same type may have different attributes ex) XML.

T.4 Database Longuages.

- i) Data-Manipulation Language (DML)
 - : Enables access or manipulation as organized by the doctor model. Namely, Petrieval. @ Insertion. @ Deletion. @ Modification.
 - Procedual DML require a user to specify What data are needed and how to get those data.
 - Declarative DML only require what data are needed.

 So, the system has to figure out how to retrieve data efficiently.
 - Def. A guery is a statement requesting a retrieval of info. Query language is a portion of DML that involves retrieval of info.
- ii) Data-Definition Labourge. (DDL)
 - : Conveys specifications of a database schema with a set of definitions, as dotabase has to satisfy certain consistency constraints.
 - i) Assertions (Consistency of data).

 Special cases: Domain constraints & Referential integrity.

 Cr type shecking.

 Cr foreign key. cascade deletion.
 - ii) Authorizations (Consistency of user)
 on read/insert/update/delete. (operations expressed by DML)

Det Data storage & definition language specifies implementation details.

Remark. Output of DDL is a metadata (data about data).
Results are stored in a special table (Data dictionary)

(1.5) Relational Databases.

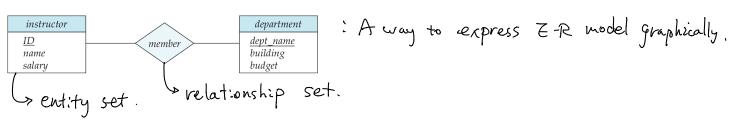
Remark. Record-based models

are structured in fixed-format records of several types.

Each table contains records of a particular type.

Tach record type defines a fixed number of fields (attributes).

Remark. SQL is not a universal turing machine, so it needs a host language for additional actions.


[[6] Database Design.

* totabase design process.

Data model provides conceptual framework on requirements.

Designer translates requirements to a conceptual schema.

- What attributes we want to capture? => Business decision
- How to group these attributes? => CS problem.
- * Unified Modelling Language (UML).

Def. Mapping Cardinality is a type of constraint that expresses number of entities to which another can be associated via a relationship set.

Def. Normalization is a process to remove redundant information of allow easy retrieval of info.

(1.1) Data Storage and Querying

Def. The Storage manager is a component of DBMS that provides the interface between low-level duta & gueries submitted.

The storage manager component includes:

- Authorizations and Integrity (Askertions)
- Transaction
- File & Buffer.

which implements several data structures for physical implementation:

- Data files (data itself)
- Data dictionary (metadata)
- Indices (provides fast access).

Def. the guery processor is a component of DBMS that Simplify and facilitate access to data.

the query processor component includes:

- DDC interreter
- DML compiler & query optimizer
- Query evaluation engine

1.8) Transaction Management.

Def. A transaction is a collection of operations
that performs a single logical function in a dotahase app.

Def. A transaction manager manages:

- Consistency (correctness of duta)

Recovery - Atomiticity (all-or-none operations applied)

Monager - Durability (Persistence ofter a transaction)

Concurrency - Isolation (among multiple transactions)

Control manager

(9) Database Architecture

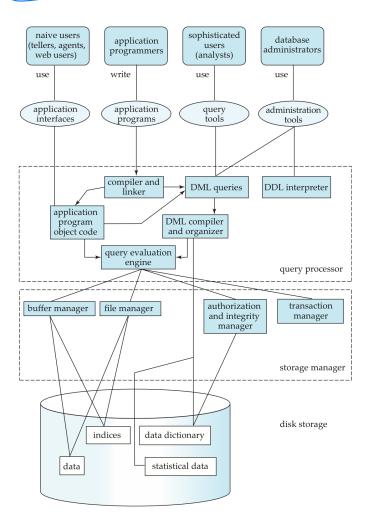


Figure 1.5 System structure.

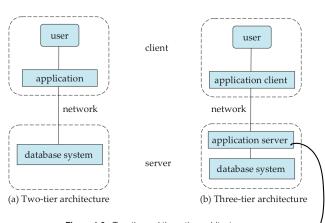


Figure 1.6 Two-tier and three-tier architectures.

API SURVEY.

Remark. The business logic (What actions to do under what conditions) is embedded in the app server, making 3-tier app more appropriate for larger apps, or apps on www.