Chapter 6. Formal Relational Query Languages (G.1) The Relational Algebra Remover The relational algebra is a procedural juery largerage. It consists of a set of operations that take one or two relations as imput and produce a new velation as output. "Constant s" values
1 ex) { (31 'a'),
1 (4, b') }. Def. A basser expression in the relational algebra is either i) A relation in the database or ii) A constant relation. Let F_1 , F_2 is a relational-algebra expressions. Then, the following are all relational-algebra expressions. i) $E(U \ E_2$: Union (E) UNION Er) ii) E_1-E_2 : Set difference (E_1 EXCEPT E_2) iii) E_l X Ez : Cartesian product (FROM E₁₀Ez) $iw)$ $\sigma_{p}(\tau_{1})$: Select (WHERE p) ℓ phedicate on attributes of τ_1 . V) $\pi_{s}(\epsilon_{l})$: Projection (SELECT s) Is list consisting of some of the attributes of El Vi) $\beta_k(\tau)$: Rename (AS x) Cos how have for the result of I,

Additional relational algebra operations S_{ϵ} intersection: $E_{l} \wedge E_{l} = E_{l} - (E_{l} - E_{l})$ i) Natural goin: F_1 $H_2 = \prod_{a_1, a_2, \ldots, a_n}$ $G_{\mathcal{L}_{1}, a_1 = \mathcal{L}_{2}, a_1, n} \ldots n$ $F_1, a_n = \mathcal{L}_{2}, a_n$ iii) Vuter jours Left outer join: E_1 INF₂ = E_1 W E_2 U $(E_1 - 1)$ $(E_1 \bowtie E_2)$ $)$ \times ζ null, $n \bowtie l$, \cdots n \sim l i. schema $E_2 - E_1$ R ight outer join : E_1 kt E_2 = E_1 kt E_2 U (E_2 - U (E_1 kt E_2)) X ζ pull, null, ζ - ζ and ζ G Schema E1-Tor - Full outer 5^{cm} : El $ME_2 = (E_1 \implies E_2) \cup (E_1 \text{ or } E_2)$

4 Extended reductional-algebra operations

\n(i) Generalized projection:

\n
$$
\pi_{F_{1},F_{2},...,F_{n}}(E) \qquad \text{or} \ \pi_{a,x}, a_{x+2}...a_{n+2}}(E).
$$
\n(ii) Generalized projection:

\n
$$
where F_{1}, F_{2},..., F_{n}: arthmetic expression into [U^{c}or] using constants
$$

(i) Aggregat von :
$$
G_{11}G_2
$$
, 71. G_n $G_{F_1(A_1)F_2(A_2)}$... $F_m(A_m)$ (E) G_1 , A_2 , A_3 G avg(a₂) C (F).
\nWhere $G_{12}G_{22}$... G_n : f_{n+1} at all n is a set of A which do group
\n $F_{11}F_{22}$... F_m : $aggregation$ function

Renark Aggregation functions can operate on the lutions which allows multiple occurences of a same tuple. Those relations are called unultivets.

Def. Multiset relational algebra.

\nLet's say three is 0, copies of tuple
$$
t_1
$$
 in t_1 , C_2 of t_2 in t_2 .

\nif the satisfies selection σ_{θ} , there are C_1 copies of t_1 in C_6 (t_1)

\nif) For each copy of t_1 , there is $\Pi_A(t_1)$ in $\Pi_A(t_1)$.

\nif) There are C_1C_2 copies of the tuple t_1t_2 in $K_1 \times V_2$.

6.2) The Tuple Relational Calculus.

Remark The typle relational calculus is nonprocedural. i.e. it describes the desired info without procedures. $(2, 1)$ $\{t\}$ $t \in r_1$ \wedge $t[a, 1] > 10$ }.

A tuple-relational-calculus formula is built up out of *atoms*. An atom has one of the following forms:

- $s \in r$, where s is a tuple variable and r is a relation (we do not allow use of the \notin operator).
- $s[x] \Theta u[y]$, where s and u are tuple variables, x is an attribute on which s is defined, y is an attribute on which u is defined, and Θ is a comparison operator (<, \leq , $=$, \neq , >, \geq); we require that attributes x and y have domains whose members can be compared by Θ .
- $s[x] \Theta c$, where s is a tuple variable, x is an attribute on which s is defined, Θ is a comparison operator, and c is a constant in the domain of attribute x .

We build up formulae from atoms by using the following rules:

• An atom is a formula.

Det.

D

- If P_1 is a formula, then so are $\neg P_1$ and (P_1) .
- If P_1 and P_2 are formulae, then so are $P_1 \vee P_2$, $P_1 \wedge P_2$, and $P_1 \Rightarrow P_2$.
- If $P_1(s)$ is a formula containing a free tuple variable s, and r is a relation, then

$$
\exists s \in r (P_1(s)) \text{ and } \forall s \in r (P_1(s))
$$

are also formulae.

Remark: Redundant Yules:

\ni)
$$
P_1 \wedge P_2
$$
 = $\neg (6P_1) \vee (7P_2)$

\nii) $\forall t \in P(P_1(t)) = 72t \in P(\neg P_1(t))$

\niii) $\forall t \in P(P_1(t)) = 72t \in P(\neg P_1(t))$

\niv) $P_1 \Rightarrow P_2$ = $\neg P_1 \vee P_2$.

\nif. A type variable is free until it is g would. If it is g would.

\nif. 14 is g countified, it is bound.

\nif. We say expression $\{t | P(t) \}$ is safe $\{t | f(t) \} \subset \text{dom}(P)$.

\nUsing the expression is unsafe.

\nSo the expression is unsafe.

[6.3] The Downan Relational Calculus.
\nExample: Faud all the tuple in P such that
$$
0.4>100
$$
.
\nType relational calculus : $\{t | \text{ter } \land \text{t}0.43>100\}$
\nNumber relational calculus : $\{z_{1,1}z_{2}, \ldots z_{n}\} | z_{1,2}z_{2}, \ldots, z_{n}\rangle \in P \land z_{4}>100$?

- . The basic relational algebra (without the extended operations on multisets)
- . The tuple relational calculus restricted to softe expressions
- . The domain relational calculus restricted to sofe expressions