Lecture 04: Functional Dependencies

15-445/645 Database Systems (Fall 2017)
Carnegie Mellon University
Prof. Andy Pavlo

Database Design

* Metrics for a good database design (God dndrhonse <;d,~uu0:)

1. Data Integrity (no loss of data) ¢ Ths lecture .
2. Good performance

* Integrity vs performance is a common tradeoff in databases

Redundancy
* Issues with example database %Mnl%*’(Student d L Colvse —«hé[ooy 8%:30,1 ne~—e rddess 3

— Duplicate columns
Duplicate entries (Obama appears twice) — Y@é\xl{\&h ¢y -
Update anomalies: Changes to room numbers means all records need to be updated

Doty

e (M/\S‘Qfé ‘n}j — Insert anomalies: May be impossible to add student to DB if theyre not enrolled in a course
mé SenH Delete anomalies: If all students are deleted, we may lose the room number for a course
NN
* The changes done to better this database is called decomposition <) é,.f(,m],p,:k(Stodod O e neddre s)
b\‘.’v"o("d‘ﬂ ook lretfer. .(-b o) | . Beouns, (CobwrseTd L roLv)
Functional Dependencies = bihy cf's bettor: “fascunig’ " Guyses (Stdond Gt 74, gale)
* A functional dependency is a form of constraint %WN"’ L)J)‘ALPVW\’\' .

et ealR 20N,
Bing B0 con e yio\sIeA
W ove were tuples

* Basic idea: A value of a variable depends on the value of another variable
* Example: sid—name because name depends on sid ("student ID implies name”)

* You can check if an FD is violated by an instance, but you can’t prove a FD using just an instance

* Two FDs X—Y and X—Z can be written X@/7 YUZ % _%x(
— But XY—Z is not the same as X—Z and X—Y D@.F =+,) 3'(:1,(1/] = T, T (d:{:‘(‘;,(: LJJ .
— :/wnp(u,s

* Defining FDS in SQL

CREATE ASSERTION student-name
CHECK (NOT EXISTS
(SELECT * FROM students AS s1, 4;:0L - nowQ
students AS s2
WHERE s1.sid = s2.sid
AND s1.name <> s2.name))

Lecture 04 15-445/645 Database Systems Functional Dependencies

« Tssues with FDs in SQL ould vy S op i EvE ord
b o=

— Performance: Need to validate FD across entire table when inserting or updating a tuple

— No major DBMS supports SQL-92 assertions

* FDs are important because they allow us to decide if our database design is correct

Closures and Canonical Covers

* Given a set of FDs we W Closure F+ as the set of all implied FDs

¢ Given a closure, the attribute closeure is: Given an attribute X , the closure X+ is the set of all attributes
such that X— A can be inferred using Armstrong’s axioms - o0 o -
g g ———> [Reflenvity Y29 = XY

* Why are closures important " frugmestdion X249 =» X212
j; 4 — Checking c?o.sure at runtime is exPensive - Trnetw +u] (=) a(yo2) 2 X2
c — We want minimal set of FDs that is enough to ensure correctn: - Untenn (@) NP2 (DT
?C/ * The minimal set of all FDs is called the canonical cover) . Bw"’”[’“ Ghay KO T2 =) ()(‘H) h G
* A canonical cover F, must have the following properties LM?\“{S

" Poeindo— ‘v
1. The RHS of every FD is a single attribute (1) a (2% = Xw—-z
2. The closure of F. is identical to the closure of F i:(‘* =%
; -, W\l%‘l&" 3. The F, is minimal (deleting any attribute from LHS or RHS of an FD violates property #2)
(/ L

* Why do canonical covers matter

— the canonical cover is the minimum number of assertions needed to assure database integrity
and correctness

— They allow us to find the super key

Super and Candidate Keys

» Super key: set of attributes where no distinct tuples have the same values for these attributes

— Allow us to determine whether we can decompose a table into multiple sub-tables

— Allow us to ensure that we are able to recreate the original relation through joins
» Candidate key: set of attributes that uniquely identify a tuple according to a key constraint

7\ .* A candidate key is a super key, but not all super keys are candidates

RS,

Lecture 04 15-445/645 Database Systems Functional Dependencies

Schema Decompositions

* Objective: Split a single relation R into a set of relations Ry, ..., R,

* Goals (in order of importance)

1. (MANDATORY) Lossless joins: Want to be able to construct original relation by joining smaller

ones using a natural join =
g] — \/awl L-ﬁ()-QhCu/"-’

2. Dependency preservation: Minimize cost of global integrity constraints based on FD’s

3. Redundancy avoidance: avoid unnecessary data duplication

* A schema preserves dependencies if its original FD’s do not span multiple tables

Lossless Joins

— Motivation: Avoid information loss.

— Goal: No noise introduced when
reconstituting universal relation via
joins.

— Test: At each decomposition
R=(R,UR,), check whether (R, NR,)-*R,
or (R,NR,)*R2.

Dependency Preservation

— Motivation: Efficient FD assertions.

— Goal: No global integrity constraints
that require joins of more than one
table with itself.

— Test:R=(R,U..UR,) is dependency
preserving if closure of FD’s covered
by each R, = closure of FD’s covered
by R=F.

Redundancy Avoidance

— Motivation: Avoid update, delete
anomalies.

— Goal: Avoid update anomalies,
wasted space.

— Test: For an X»Y covered by R, X
should be a super key of R,.

