Lecture 05: Normal Forms

15-445/645 Database Systems (Fall 2017)
Carnegie Mellon University
Prof. Andy Pavlo

Normal Forms

Types of Normal Forms — Theovetic| quadonce S db Jegan

Now that we know how to derive FDs, we can:

1. Search for “bad” FDs
2. If they exist, then decompose them into two tables, repeat for sub-tables

3. When done, the database schema is normalized

A normal form is a characterization of a decomposition in terms of the properties that satisfied when
putting the relations back together

Universal relation: The joining of all tables — o 2¢ & O S -
Three properties:

1. Lossless Joins: Information is not lost or bad information is not created when joining
2. Dependency Preservation: FDs are not split across relations

3. Redundancy avoidance: No repeated attributes in tuples
History

— Ted Codd introduced the concept of normalization and the first normal form
— Codd Went on to define second and third normal form

— Codd and Raymond Boyce later defined Boyce-Codd normal form
The ith normal form is more restrictive than the (i-1)th normal form

Most common/important ones are the 3rd or Boyce-Codd normal Form T Can be ecg;(j tmp\@»&/d‘d
_5\ ™ '(sr‘a\L:H ('

1.

2.

1st normal form (1NF): All tables are flat

* All types must be atomic e Aevand o b~ oremsre col-

¢ !
o \T3v 6 AP SR

* No repeating groups
2nd Normal form (2NF): ”Good enough”

¢ Must be in first normal form
* Any non-key attributes fully de on the candidate key

Lﬁxv\chol/‘&\ 1
&{).e,kn(e,th .

Lecture 05 15-445/645 Database Systems Normal Forms

3. 3rd Normal form (3NF): Most common vedindavdh fovinateev
> vebunduct et

* Always preserves dependencies (unlike BCNF) but may have some anomalies

4. Boyce-Codd Normal form (BCNF): Most common

* No redundancies and no lossless join (Wﬂua G)Vo_g.ey(/wl'bn sy be Vo [d—b&)
* For gny FD) if any left hand side attributes are not a super key, the relations are not in BCNF

x * Some BCNF decompositions may lose dependen:tei when decomposed relations are joined

back together) C 8B C
T g B > Qo €0 40512 280)
5. 4th and 5th Normal Forms: See textbooks A ABC (Tvew)

AR C (Bxlse) D ><
6. 6th Normal Form: Most (normal) people never need this Q“,W,\, fLconstrwar ;\:

’? eatr F.
NoSQL o Fie.

* The normal forms is usually not how people design databases
* Instead, people usually think in terms of object-oriented programming — DM
* Key tenants of the NoSQL movements

1. Prior to early 2000s, few people needed high-performance DBMS. In modern day speed is very
important
2. Joins are slow, so we will denormalize tables
3. Transactions are slow
%(Aw,v\\— Ldra. wded \/)Lwe Ho ATCWN\?OV] hetareen P{,\v\@lml LMOM' m(l 4o is‘jzw(oo-jov\,T,
Conclusion =) dhe less ghtvactzor] Jaqer + BAD

* You should know about normal forms, they exist

* There is no magic formula for determining the right amount of normalization for an application

Given a schema R and a set of A relation R with FD set F is in 3NF
FDs F, we can always decompose if for every X2Y in F+:

R into {R,,..,R,} such that — XY is trivial, or

— {R,,.-,R .} are in BCNF — X is a super key, or

— The decompositions are lossless. — Y is part of a candidate key

BCNF DECOMPOSITION SNF DECOMPOSITION
ALGORITHM ALGORITHM

Given a relation R and a FD set F: - . .
Step #1 — Compute F+ Given a relation R and a FD set F:

Step #2 — Result ¢ (R} Step #1: Compute Fc
Step #3 — While R; € Result not in BCNF, do: .
— (a) Choose (X=Y) € F+ such that (X»Y) is covered Step #2:Result « o

by R, and X+R, Step #3: For (X»Y) € Fc, add a relation
— (b) Decompose R, on (X»Y): R. (X Y) to Result

R;. ; € X U Y |«R,includesY Liass .
R; l TR -V {_R; o oty Step #4: If Result is not lossless, add

Result « (Result - (R)) U {R; ;, R) a relation with an appropriate key.

U NE 2 INE

