[.] Measure theory: Motivation

Remarks i) SER since EER and
$$E^{c}eA \Rightarrow ZUE^{c}eSLeA$$
.
(i) $\phi \in A$ since $SLEA \Rightarrow D^{c}=\phi \in A$.
(ii) A is closed under cautable intersections
p(2) apprec $\Xi_{1}, \Xi_{2}, \cdots \in A$.
 $\prod_{i=1}^{n} E_{i} = \prod_{i=1}^{n} (\Xi_{i}^{c})^{c} = (\bigcup_{i=1}^{n} \Xi_{i}^{-})^{c} \in A$.
(3) Measure theory: Measures
Def Given $C \subset 2^{S^{c}}$, the 6-algebra generated C , written $O(C)$,
is the "similast" S -algebra containing C
That is, $O(C) = \bigcap A$
 $A \supset C$ no cuery existing s-algebra A always exists
i) 2^{A} is a S -algebra SA always exists
ii) Any intersection of C -algebra is a S -algebra.
 $G \subset Ci > zi$ an intersection $f \circ$ -algebra E
ii) $A = \xi \phi, SZ$
iii) $A = \xi \phi, SZ$
iii) $A = \xi \phi, SZ$
iii) $D = G = G$ algebra Z
 $E = S(T)$ where $T = \beta$ open sets of \mathbb{R} 3.
Any top-logical space is free.

(1.5-6) Measure theory: Basic Properties of Measures. Thy Basic Properties of measures. Let (R, A, M) be a measure space. i) Monotonicity If $t, F \in A$ and $E \subset F$, then $M(E) \leq M(F)$ $pf)_{\mathcal{M}}(F) = \mathcal{M}(F \cup (E^{c} \wedge F)) = \mathcal{M}(E) + \mathcal{M}(F^{c} \wedge F) \geq \mathcal{M}(E).$ les measure is non-negative. inequality due to "overlapping" ii) Subadditivity If $E_1, E_2, \dots \in A$, then $\mu(\tilde{U}_{E_1}) \stackrel{i}{=} \sum_{i=1}^{n} \mu(E_i)$ G Arbitraty sets. Not necessarily painwise disjoint. pf). The dissonization trick. Sets F_k defined by $F_1 = E_1$, $F_2 = E_2 - E_1$, $F_3 = E_3 - (E_1 \vee E_3)$ are disjout, below to $\bigcup E_{\overline{i}}$, and satisfy $\bigcup E_{\overline{i}} = \bigcup F_{\overline{i}}$. Using this true, $\mu(\bigcup_{i=1}^{n} E_i) = \mu(\bigcup_{i=1}^{n} F_i) = \sum_{i=1}^{n} \mu(E_i)$ F. are disjoint. iii) Continuity from below If $\Xi_1, \Xi_2, \dots \in \mathcal{A}$ and $\Xi_1 \subset \Xi_2 \subset \dots$, then $\mathcal{M}(\bigcup_{i=1}^{\mathcal{U}} \Xi_i) = (\lim_{i \to \infty} \mathcal{M}(\Xi_i))$ iv) Continuity from above If $E_1, E_2, \dots \in A$ and $E_1 \supset E_2 \supset \dots$ and $M(E_1) < A$, Note that it holds for then $\mathcal{M}\left(\bigwedge_{i=1}^{\infty} \mathcal{E}_{i}\right) = \lim_{i \to \infty} \mathcal{M}(\mathcal{E}_{i})$. every probability measure. ex) Lebesgue. Let $E_i = [i, \infty)$, then $\mu(\tilde{A}E_i) = 0 \neq \lim_{i \to \infty} \mu(E_i)$. Er Violates M(Ei) < 20

(1) Measure Theory: More properties of Probability Measures.
(at
$$(\Omega, A, P)$$
 be a probability measure space, with $E, F, E; EA$.
i) $P(EVF) = P(E) + P(P)$ if $E \cap F = \phi$.
ii) $P(EVF) = P(E) + P(F) - P(E \cap F)$.
iii) $P(E) = (-P(E^{c}))$
iv) $P(E \cap P) = P(E) - P(E \cap F)$
v) $P(E \cap P) = P(E) - P(E \cap F)$
v) Inclusion- Exclusion Formula.
 $P(\bigvee_{i=1}^{n} E_{i}) = \sum_{i}^{n} P(E_{i}) - \sum_{i \leq j}^{n} P(E_{i} \cap E_{j}) + \sum_{i < j < k}^{n} P(E_{i} \cap E_{j} \cap E_{k}) - \cdots + (-i)^{n+1} P(E_{i} \cap E_{k} \cap \cdots \cap E_{k})$.

[1.8] Mussure Theory: CDFs and Barel Probability Massures
Def. A Borel Measure on R is a measure on (R, B(R)).
(Probability) (Probability)
Def. A CDF (Cumulature Distribution Function) of
$$f_{1}$$

is a function $F: R \rightarrow R$
such that i) $f: s$ nondecreasing ($\pi \leq y \Rightarrow f(\pi) \leq f(y)$)
ii) $f is nondecreasing (\pi \leq y \Rightarrow f(\pi) \leq f(y)$)
iii) $f is right - continuous ([im, f(\pi) = [im, F(\pi) = f(x)])$
iv) $[im f(\pi) = 1$.
iv) $[im f(\pi) = 1$.
iv) $[im f(\pi) = 0$.
include point on theright.

The i) If Fis a CDF,
then there is a unique Borel probability measure on R
such that P((-∞, nJ) = F(n) VD ∈ R.
ii) If P is a Borel probability measure on R,
then there is a unique CDF F
Such that F(n) = P((-∞, nJ) VD ∈ R.
That is, there is an equivalence

between CDF and Bovel probability measure.