3.) Random Variables: Definition and CDF.

Def. Given
$$(\mathfrak{T}, \mathcal{A}, \mathcal{P})$$
, a random variable is a function
 $X: \mathfrak{N} \to \mathbb{R}$ such that $\mathfrak{f} \in \mathfrak{N} \in \mathfrak{N} \mid X(\omega) \leq X \mathfrak{f} \in \mathcal{A} \forall \mathcal{X} \in \mathbb{R}$.
Remark. \mathfrak{I} $X \mathfrak{i} \mathfrak{s} \mathfrak{a}$ "measurable function" if it satisfies -.

Def. The CDF (Cumulative Distribution Function) of a two (random variable)
is the function
$$F: \mathbb{R} \to [0,1]$$
 such that $F(t_1) = P(X \le x)$.
pf) i) Monotonicity. (If $x \le y$, then Fox $\le F(y_1)$)
Suppose that $x \le y$. Then, $\{X \le x\} \subset \{X \le y\}$.
Therefore $P(X \le x] = F(x) \le P(X \le y) = F(y_2)$
ii) Limiting values. $(\lim_{x \to -\infty} F(x) = 0)$.
Since $F(x)$ is monotonic and bounded below by zero, it converges as $x \ge -\infty$.
Let $x = -n$. $\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} F(x_1) = \lim_{x \to -$

pf) if
$$P^{X}(A) = P(X \in A)$$
 $\forall A \in \mathcal{B}(\mathbb{R})$ is a function $P^{X}: \mathcal{B}(\mathbb{R}) \rightarrow [0, 1]$.
if $P^{X}(A) = P(X \in P) = P(P) = 0$.
if) $P^{X}(x_{1}) = P(X \in \mathbb{R}) = P(N) = 1$.
if) For constable additivity, let $PB:3$ be a contable disjoint subsets of $\mathbb{R}(\mathbb{R})$
Sets $\{X \in B_{1}; 3: s \text{ also disjoint}, 0s \{X \in B_{1}; 3 = S \cup S \mid X(U) \in B_{1}; 3 \}$.
So, $\{X \in \mathcal{G}_{10}, P_{1}\} = \mathcal{O}_{1} \{X \in B_{1}; 3 \}$.
 $P^{X}(\mathcal{O}_{1}, P_{1}) = P(X \in \mathcal{O}_{1}, P_{1}) = \sum_{i=1}^{\infty} P(X \in B_{i}) = \sum_{i=1}^{\infty} P^{X}(B_{i})$.
 $P^{X}(\mathcal{O}_{1}, P_{1}) = P(X \in \mathcal{O}_{1}, P_{1}) = \sum_{i=1}^{\infty} P(X \in B_{i}) = \sum_{i=1}^{\infty} P^{X}(B_{i})$.
Def. A function $F: \mathbb{R} \rightarrow [0, 1]$ is a distribution function
if it satisfies three properties of a CDF.
howely, unonoticity, lowiting values, and vight - continuity.
Thus, let F be a distribution function,
and consider a probability epole ([0,1]], $\mathcal{B}(D_{1}|J), P$)
such that P is the labesque measure.
There exists a measurable function $X: D \rightarrow \mathbb{R}$
whose CDF it satisfies $F_{X} = F$.

Prop. Distribution of r.v. X, P^{X} is the probability measure induced by $CD \ddagger F$. $(Pf) (Outline) P((-m,71)) = f(n) = P(X \le n) = P(X \in (-m,71)) = P^{X}(e-m,71)$ Fynivalence between CDFand Bovel probability nearure

which is the measure theory - perspective) Decompositions of Q. Let $Q = P^{X}$, $J = \frac{9}{3} \times ER | Q(A) 70 \overline{3}$. $Q_{d}(A) = Q(ANJ)$, $Q_{c}(A) = Q(A) - Q(ANJ)$. $Q = Q_{d} + Q_{c}$. Continuous part of the measure . $\frac{1}{2}$ Oc $\frac{1}{2}$ Oc $\frac{1}{2}$ Oc $\frac{1}{2}$ Oc

3.4) Rondom Variables with Densities